
7 Tips to Optimize Remote
Developer Team Productivity

2

Research shows that developer teams play a key role in driving business
performance.¹ That’s why empowering them to maximize their potential
is such an important focus area for leaders. But that job has become
more complicated today as organizations embrace remote work and
team leaders are increasingly managing fully distributed teams. How
can technical leaders enable these distributed developer teams to build
productively, collaborate efficiently and securely, and drive innovation at
scale, regardless of location?

tl;dr

• Maintain your team’s culture in an online environment.

• Provide your developers with processes and tools to help them code
remotely, on demand, while enhancing team collaboration.

• Apply automation principles and track application health across the
entire development lifecycle in a remote, distributed organization.

The tips inside include how to:

¹“Developer Velocity: How software excellence fuels business performance,” McKinsey, 2020.

https://aka.ms/AA7z63o

3

This book is for those who…

Coordinate or lead a group of developers across a
distributed or partially distributed team.

Wonder what slows developers down when they’re working
and collaborating remotely.

Have a role like software architect, engineering manager,
development manager, or technical lead.

Want to be a more effective technical leader.

Want to understand some of the common challenges of
distributed developer teams and how you can improve
areas like productivity, collaboration, and culture.

4

Table of contents

7 tips to optimize remote developer team productivity 5

Tip 1: Take your developer culture online 7

Tip 2: Enable your team to code on-demand, from anywhere 14

20Tip 3: Give your developers choice and flexibility

Tip 4: Enhance remote collaboration and reduce coding friction 24

Tip 5: Strengthen and automate app security 30

Tip 6: Automate, automate, automate 32

Tip 7: Embed signals to track app health and performance 35

Closing thoughts 37

How Microsoft can help 38

7 tips to optimize
remote developer
team productivity

6

Research by McKinsey¹ has shown a strong correlation between the degree
to which leaders empower their developer teams and resulting business
performance. The findings illustrate that the more you enable developers to
build on their terms and collaborate globally and securely—whether remotely
or co-located—the better the business outcomes tend to be in terms of
performance, innovation, customer experience, brand, and talent growth. But
as organizations increasingly embrace remote working across their employee
base, what can developer teams do to continue to optimize their productivity,
agility, and collaboration? As a technical leader, how can you help ensure your
distributed developer team can code efficiently, collaborate seamlessly, and ship
securely from any location?

Examination of the same McKinsey report reveals that the number one driver
of business performance is best-in-class developer tools. Organizations with
strong tools are 65 percent more innovative, and their developer satisfaction
and retention rates are 47 percent higher. Equipping your developer teams with
the right tools, skills, and culture for remote development is one of the most
effective ways to contribute to delivering these business outcomes.

The good news is that developers as a whole were actually early pioneers
when it comes to effective remote working, establishing vast communities,
like GitHub, based largely on the promise of improving collaboration between
distributed contributors. With many of your developers already skilled at
remote collaboration, you may be surprised by the gains your team can achieve
by simply enabling them to harness that skillset within the context of distributed
professional work. Here are seven tips on how, as a technical leader, you can
deliver just that.

Introduction

¹“Developer Velocity: How software excellence fuels business performance,”
McKinsey, 2020.

https://aka.ms/AA7z63o

Building and maintaining a strong developer
culture is one of the most important tasks for a
technical leader.

This can be a challenge when everyone is co-located, but it can be even
harder when the people on your team are physically apart. However, with the
right leadership and tooling, your remote developer team culture can thrive.

If you’ve ever worked in a remote role, you’ve probably experienced some of
the challenges it can create in terms of not feeling connected to individuals
on your team or plugged into a meaningful culture. People tend to have
a strong social response to routines and rituals, casual conversations, and
after-hours gatherings that naturally arise within co-located environments.
Without those interactions, a healthy team culture can be difficult to
establish because every touch point is work-focused. Team members run the
risk of never really getting to know one another, and they may not be able to
reach a comfort level where communication flourishes. This can be a much
bigger problem than people realize.

Tip 1 Take your developer
culture online

Tip 1: Take your developer culture online

8

Start with cultivating a healthy culture

Enabling your team to show who they are, what’s important to them, or
even just their sense of humor can improve collaboration and productivity
by developing better team communication and a deeper understanding
of everyone’s capabilities and potential. It can also help with attracting and
retaining talent. But where do you start?

Since those interactions won’t come out naturally in a virtual environment,
consider creating a dedicated space and time to encourage and facilitate
this type of sharing and communication amongst your team. Today’s leading
collaboration platforms, such as Microsoft Teams, offer a range of capabilities
that can support this. For example, you can create chat channels that act as

a virtual watercooler for people to connect
informally in whatever way they want. That
could be sharing memes, talking about their
hobbies, their latest TV obsession, or an
interesting article on development practices
they read. Some even go as far as enabling
automated ‘icebreaker bots’ to create “coffee
time” between team members.

Beyond a virtual watercooler, and generally working toward facilitating richer
and more personal interactions across the team, as a leader you can build
culture by using additional processes and resources to demonstrate empathy,
contribute to individual self-development, and provide a safety net for
individuals who run into remote working challenges. For example, consider a
revised, more deliberate approach to your one-on-one time with developers.

You can create chat channels
that act as a “virtual
watercooler” for people to
connect informally.

https://aka.ms/icebreakbot

Tip 1: Take your developer culture online

9

Routine check-ins are important regardless of location, as they help
ensure people feel appreciated and are empowered from a career growth
perspective. But you’ll likely need to adjust the cadence of these check-ins
to compensate for less overall engagement, and you’ll also likely need to
add more structure to the meetings to help increase personal sharing and
feedback, especially when it comes to their productivity and well-being.

You may also consider giving your team the option of participating in
wellness or learning sessions that specifically tackle common remote working
issues. Individuals often won’t proactively reach out if they’re having trouble
maintaining productivity or feel like they’re unable to learn as quickly in a
remote environment. Short sessions and even online resources that offer
practical tools like “productivity tips for the (basement) office commute” will
go a long way toward catching these issues while they’re outside your daily
purview and before they become a larger problem.

Remember: a happy team is a productive team.
Creating a strong culture online will not only increase
performance, it will help with talent, too. Top
performers naturally gravitate to companies that have
built up this reputation.

Tip 1: Take your developer culture online

10

Think through the tools you need to bring
your culture to life

Today’s tools can enable you to create virtual environments that
facilitate healthy culture development across distributed teams,
and those same tools can be used to bring your team together in
a way that feels much closer to a co-located experience.

Three foundational capabilities for a strong virtual
team culture:

1. Sustain rich, seamless, real-time communication with instant
messaging, audio calling, and video conferencing

2. Provide a single source of truth with group storage and file sharing

3. Create topical discussions and enhance team collaboration with
tailored virtual workspaces

Tip 1: Take your developer culture online

11

For example, Microsoft Teams offers your team the ability to chat, meet, call, and
collaborate from anywhere, and from any device. Communication is enriched and
accelerated as people have the option to pick the right communications mode for
the task, shifting away from transactional communications channels like email for
tasks that need more agile, real-time collaboration.

The combination of video conferencing, instant messaging, screen sharing, and
developer tool integration enable your distributed team to hold daily stand-
ups and scrums as if they were in the office. You can even seamlessly bring back
activities like whiteboarding as a team via integration between Microsoft Teams
and Microsoft Whiteboard.

Looking beyond individual meetings and moments in time, having a persistent
collaborative space your developers can maintain with knowledge sharing and
progress updates will also enable them to better track overall project status and

other deliverables. Based on the work that needs to be
done, they can communicate via a visual model, such as
a virtual Kanban board on a Microsoft Teams’ Wiki tab—
enabling them to recreate this essential tool in a virtual
environment. It’s also possible to integrate many developer
tools into Microsoft Teams, such as Azure Boards, for a
variety of comprehensive solutions aimed at enhancing
collaboration and team management across key workflows.

For more information on how you can maximize the value of Microsoft Teams,
from collaboration to scrums and boards to useful integrations and workflow
enhancements, Sid Uppal, one of the founding members of Microsoft Teams, put
together an in-depth DevOps team example here.

Even activities like
whiteboarding, are
now available via
Microsoft Teams.

To illustrate how cultivating a strong developer team culture
online can look in practice, let’s look at the fictional story of Amy
the tech lead.

https://aka.ms/teamslearnmore
https://aka.ms/teamswiki
https://azure.microsoft.com/services/devops/boards/?nav=min
https://mybuild.microsoft.com/sessions/aaf43a43-e00c-46ef-b4a5-6711c4451d78

Tip 1: Take your developer culture online

12

Amy sat down at her desk and logged into her work laptop with a hot cup
of green tea at her side to start the day. She scanned her developer team’s
virtual Kanban board, noting most of the cards had progressed. As the Tech
Lead for the Customer Onboarding team, she was happy to see no obvious
blockers. She skimmed through her email before opening the General chat
channel in Microsoft Teams. This channel functioned as the main room for her
fully distributed team.

Amy scrolled back through the messages her team had posted during the
night. She saw a few updates and requests for help. She noticed Zoe respond
to Jay’s request for help. Amy wrote herself a reminder to recognize this
action in her one-on-one with Zoe later that day. To build a strong team, Amy
knew to encourage team members to ask for and provide help to each other.

Amy continued scrolling through the messages. She paused, smiling at
suggestions to celebrate team accomplishments for the month. When
working with a co-located team, Amy would default to buying celebratory
treats, but with everyone in different cities and time zones, this approach
wouldn’t work. One person suggested offering verbal appreciations for team
members during their end-of-month virtual meeting. Another suggested
using Microsoft Whiteboard, their virtual team diagramming tool that’s
integrated into Microsoft Teams, to collectively draw an image. The single
image would represent something meaningful to the team. Amy was always
impressed by the creativity of her team. Amy picked five options she felt
were most realistic and fun then created a poll in the team chat. She knew
her developers disliked unnecessary meetings that could be replaced with
automated decisions—this way they could vote and the result would be
automatically posted the next day.

Amy’s story
Cultivating a team culture remotely

Tip 1: Take your developer culture online

13

Amy continued to scan through the chat. She laughed out loud at some
memes posted, adding a few emoji reactions to contribute to the team’s
informal “Chit chat” channel. She also saw “Chris,” the coffee-time bot, was
hard at work. The automated icebreaker bot set up informal coffee-time
chats between random team members. It sent calendar invites automatically,
even suggesting a few questions as conversation starters. This week’s
theme seemed to be about favorite programming language features. Amy
appreciated these automated nudges, knowing how important it was for
team members to learn more about each other.

Amy also saw that Jay shared a link to his finished design document for
integrating a new onboarding partner. After clicking on the link, Amy
reviewed the proposal, scanning through comments from other team
members and noting the final outcome. She thought Jay had landed on
a strong technical solution. Returning to the channel, Amy posted a large
thumbs up GIF in response, an informal team tradition to show her support.

Common productivity inhibitors and roadblocks,
such as facilitating onboarding, environment
setup, and providing required training can have an
outsized impact on a distributed team.

Everything from troubleshooting issues to procuring new hardware and
configuring new environments can become exponentially more difficult
remotely. Should your highly skilled developers spend time and energy
worrying about hardware, software, or location when they could be laser-
focused on contributing to the success of the project?

Tip 2 Enable your team to
code on-demand,
from anywhere

Tip 2: Enable your team to code on-demand, from anywhere

15

Streamline the setup process for new
developer environments

The most important step you can take to eliminate or at least mitigate the
impact of these roadblocks when they inevitably arise is to streamline and
automate the setup and onboarding process. You don’t want your team
dealing with the tedious details of setting up a virtual machine (VM) and
code editor, or checking out code when they could be problem-solving or
coding. Worse than this, new team members may have to wait until another
team member is online before they can start or complete this process,
which, depending on time zones, could cause further delays.

One way to start is by providing VM images that your team can use to
quickly set up new local development environments. Ensure these VMs are
kept up-to-date with the team’s favorite tools installed and preconfigured,
including setting up code editors with team coding conventions. It’s also
a good idea to invest in a script that automates the project setup given an
empty environment. Example tasks might include checking out code, setting
up a default database, or creating a local configuration file for development.
By streamlining and automating these steps you’ll not only dramatically
reduce downtime in the event of some major hardware or software
issue, but you’ll also enable team members to rapidly create new local
development environments wherever they are, providing extreme flexibility
to relocate or use multiple machines.

Tip 2: Enable your team to code on-demand, from anywhere

16

Enable your team to spin up pre-configured
developer environments in just a few clicks

While streamlining and automating local setup has its benefits, a more
modern approach is to use new cloud-hosted environments and tools that can
dramatically speed up this process for your team.

Even when using VMs, developers often spend endless hours configuring
environments for new projects—just to do it all over again once that project is
complete. Visual Studio Codespaces brings your development environment into
the cloud, removing local dependencies and manual configuration. Developers

can set up fully configured cloud-hosted
development environments in just a few clicks.
Codespaces’ cloud-hosted environments are
then accessible in minutes from any device via
a browser-based editor, making it a powerful
resource for distributed or mobile teams that
can’t depend on routine access to a single
location or machine.

And Visual Studio Codespaces isn’t limited by its simplicity and ease-of-
access—its environments are fully-configured with all the tools developers
need to be productive for any type of project. They’re fast to create and
disposable, featuring Git repo support, extensions, and a built-in command line
interface where your developers can edit, run, and debug applications.

Developers can set up fully
configured cloud-hosted
development environments
in just a few clicks.

Tip 2: Enable your team to code on-demand, from anywhere

17

One final point to keep in mind is that streamlining the local development
environment setup process or removing it entirely with cloud-hosted
environments will do more than just help your existing team. You’ll also
automate the onboarding process for new team members, which will keep
their energy high by letting them avoid the boring stuff right when they are
most excited to dive into the work you hired them to do. Pair automated
onboarding with strong team checklists and resources and they’ll be able to
immediately jump into tasks like making small changes to code, so they feel
productive, along with dedicating more time to learning about the product,
tools, and technologies via free, interactive learning courses, such as those
on Microsoft Learn.

To illustrate how the right on-demand tools and processes can
enhance distributed developer productivity in practice, let’s look
at the fictional story of Ryan the remote developer.

https://aka.ms/rdlearnaboutlearn

Tip 2: Enable your team to code on-demand, from anywhere

18

Today is an exciting day for Ryan, who works remotely on the Customer
Onboarding team. After two years of work and numerous big projects
completed, it’s finally time to retire his trusty old laptop—he’s expecting to
receive a new Surface Book 3 to replace his current machine.

Ryan commits and pushes his last code change on his old laptop before getting
his lunch. He glances at the CI build before going upstairs to his kitchen, noting
that while it looks set for completion, he’ll get a notification via Microsoft
Teams on his phone if his change has created an issue with the team build.

After finishing his lunchtime burrito, he hears the doorbell ring. A quick
unboxing later and Ryan has his new Surface Book 3. He’s excited to test it out.
Luckily, IT already installed and configured his favorite host OS, so Ryan is able
to jump right into the process of setting up a local development environment
through his team’s preconfigured VMs. Ryan knows this process will be simple
from past experience, as he uses multiple local development environments on
different machines for when he’s traveling or working offline. He remembers
his team does a good job keeping the VMs up to date so he doesn’t need to
manage local dependencies or manually configure tools.

While Ryan is waiting for the VM setup to complete, he gets a Microsoft Teams
notification. Glancing at the screen, he sees that his earlier code change did in
fact break the team build. Undeterred, Ryan fires up the web browser on his
Surface Book 3 and connects to his Visual Studio Codespace, the cloud-hosted
development environment his team can access from any device. “Codespaces is
perfect for just this situation,” he thinks.

Ryan’s story:
Seamless developer productivity from anywhere

Tip 2: Enable your team to code on-demand, from anywhere

19

Ryan jumps in and begins scrolling through the build logs wondering what
might have gone wrong. He spots something unusual, and suspecting what
could be the problem, adds a debug point. Ryan then starts the program
and connects to it from another browser window. He enters some data into
his running program, submits a form, and switches back to his Codespace.
Execution stopped at the debug point so Ryan can inspect some variables. As
suspected, he had forgotten to check for empty or null input for a particular
variable before using it. He writes a unit test, makes the code change and runs
the team’s command line build from the console in Codespaces. Ryan is still
stunned he can do this all from a web browser. Everything looks good, so he
commits and pushes his changes, hoping it fixes the full build.

Ryan closes his web browser, returning to see his VM is set up. He posts in the
team chat channel about the issue, noting that he’s already fixed it.

Once you have an established baseline of
standardized environments and tools that your team
can rely on, a way to optimize team performance
further is to provide your developers with the
flexibility and freedom to fine-tune their toolset.

This may seem counterintuitive given that standardization and continuity
can be important to team productivity and collaboration—imposing a single
vendor tool, for example, will ensure there aren’t barriers to the team working
together, speaking the same language, and following the same methodology.

But individual preferences don’t need to be sacrificed. Moreover, attempting
to limit developers’ choices can have unintended effects, such as incentivizing
people on the team to create their own mini-ecosystems of unapproved tools
that can lead to security and governance vulnerabilities (also known as “shadow
IT”). This risk increases when your team is fully distributed, as developers are
confronted each minute with an unsupervised decision on whether to use the
tool or device they prefer, or the one that’s being forced on them.

The answer? Balance your security and governance concerns with the needs
of both the team and individual contributors. Have open discussions with
your team, as they will likely point you to a variety of tools they already see as
beneficial. You may be surprised at the flexibility you have to satisfy everyone.

Tip 3 Give your developers
choice and flexibility

Tip 3: Give your developers choice and flexibility

21

Balance team productivity with
individual autonomy

When determining your overall strategy, start by delineating between the
areas where it’s in everyone’s interest to have tool continuity, relative to the
areas where there’s opportunity and reason to provide more flexibility. For

example, it’s important that your team is using
the same communication and collaboration
tools, including video conferencing, chat, and any
important dashboards, such as a Kanban board.
You’ll also want to ensure that you and your
remote project manager have a single source of
truth spanning key project information and overall
project status.

But for development workflows, you may want to be more flexible. Those
closest to a given workflow will likely have the best idea of what they need
to get the job done, and that can be your baseline. From there, you can work
with your team to evaluate the broader ecosystem of tooling that’s either
already interoperable or could be easily integrated. In some cases, it may be
better in the long run to invest in developing the right ecosystem for your
team rather than the approach of conformity to a single tool. Or, you may find
the best of both worlds.

It’s important that your
team is using the same
communication and
collaboration tools.

Tip 3: Give your developers choice and flexibility

22

Choosing the right foundation

The Visual Studio family of tools is a common favorite of developer teams
first and foremost because it provides a versatile and extensible platform
for different workflows and environments. For example, Visual Studio
Codespaces was mentioned in Tip 2 due to its ability to provide full-featured,
cloud-hosted development environments, which are simple to use and
accessible to distributed teams from different locations and devices. But
within the Visual Studio family, teams also have the option of using other
environment types, and accessing those environments via the web or a local
IDE and editor that’s available on Windows, Linux, or Mac devices:

 ● Visual Studio: a powerful, full-featured IDE for everything from
coding, debugging, testing and deployment.

 ● Visual Studio Code: an open-source code editor for editing and
debugging apps on any OS. It can run locally or via a browser
and features AI-assisted development spanning statement
completion and refactoring.

 ● Visual Studio Live Share: a feature integrated into Visual Studio,
Code, and Codespaces that’s used for sharing, reviewing, and
collaborating across code and projects in real time.

https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/?wt.mc_id=DX_841432
https://visualstudio.microsoft.com/services/live-share/

Tip 3: Give your developers choice and flexibility

23

Think at a systems level to identify
opportunities for integration across the stack

It is important to also consider how easy it will be to add or integrate
additional tools from a larger ecosystem into your workflows. Visual Studio
is deeply integrated with GitHub, so your team can tap into the GitHub
Marketplace and a healthy ecosystem of quality plugins that can further
enhance development and automate activities (this will be covered in-depth
in a subsequent tip). Visual Studio is also integrated with many Azure services,
which can be immensely beneficial as your organization shifts to hybrid or
public cloud environments and cloud-native applications.

Regardless of the platform and tools you adopt, the idea here is to take a
sandbox approach, where you have firmly defined boundaries that maintain
a strong foundation of tools and standards for consistency, collaboration,
and security, yet within those boundaries your team can make individual
choices on how to best achieve their goals. This flexibility and choice will also
give your developer team the ability to stay on top of emerging tools and
techniques as the technology landscape evolves—whether that’s Docker,
Kubernetes, the next great GitHub community plugin, microservices, or
adopting a DevOps culture and practices.

Taken a step further, you might even want to deliberately create secure
sandbox environments for your team to experiment with new ideas in a
setting that is secure and has no impact to production applications. Again,
with Codespaces, it’s extremely easy to spin up and discard new secure
environments where your team can experiment with different tools or
libraries, learn a new framework, or even build a quick prototype to test out
in a production-like environment.

Ongoing collaboration and feedback are critical to
keeping distributed developer teams productive.

In co-located environments, even the best developers can fall into coding
silos that negatively impact productivity, particularly when code reviews are
more than a few days apart. It’s easy to imagine how this could get worse
when each team member is remote.

In distributed environments there are fewer informal connection points for
developers to share information with others on their team. Silos can grow
larger, and small issues such as getting stuck on a bug or building a feature
that’s different from team conventions have a higher chance of spiraling into
more costly and disruptive productivity inhibitors.

It’s important for your developer team to remember that software is a team
sport. They’re trying to solve business problems quickly, but they also need
to do so as a team—not as a group of individuals.

Tip 4 Enhance remote
collaboration and reduce
coding friction

Tip 4: Enhance remote collaboration and reduce coding friction

25

Accelerating feedback loops

To facilitate agile collaboration, start by helping to put structure in place
that will accelerate feedback loops. For example, break projects up into
smaller chunks and encourage people to work together in pairs. This
will create additional opportunities for code reviews while putting team
members in touch more frequently, helping catch issues early on for an easier
and cheaper fix. This will also have the added benefit of improving code
quality (and likely team morale) as developers are able to better adapt to
incremental feedback and guidance.

Another way to accelerate feedback loops is by streamlining asynchronous
code reviews. GitHub is a great resource for this. Its inherently distributed
nature, which comes from using the distributed version control system
(DVCS) Git as its foundation, is practically tailormade to support remote,
asynchronous code reviews.

Your team is likely familiar with key features like pull requests in GitHub and
its seamless commit process. By using these features and adopting best
practices from the open source GitHub community—such as providing
sufficient context in a pull request description, providing quality commentary
in pull request reviews, pushing an alternative commit to articulate a different
approach, and more—your team can take full advantage of its distributed
nature to enhance cross-team collaboration and increase productivity. Even
working across different time zones can be turned into an advantage. For
example, large, globally distributed development teams have created very
efficient 24-hour development pipelines through these practices and tools.

Tip 4: Enhance remote collaboration and reduce coding friction

26

You may have heard the term “innersourcing,” which is technically what’s
being advocated here: fostering open, collaborative development by applying
best practices from open source culture to proprietary projects and code.
Innersourcing can improve the efficiency and productivity of not only your
team, but the entire organization. The power of innersourcing is how it can

break down the hierarchies and roadblocks
that hold back the potential economies of scale
that can result from widespread cross-team
knowledge sharing, more rigorous peer reviews,
and mass collaboration. In short, innersourcing
can lead to exponentially higher quality code and
productivity across large and complex software
engineering organizations.

You may not be able to drive widespread adoption of innersourcing initially,
but you can help set an example by showing the value of innersourcing to
your organization through your team, while they get to enjoy the benefits of
innersoucing across their own workflows in the meantime.

Start by helping to put
structure in place that will
accelerate feedback loops.

Tip 4: Enhance remote collaboration and reduce coding friction

27

Check it out
In this short video on collaboration, Allison
Buchholtz-Au, a program manager for Visual
Studio Codespaces, shows you helpful features
like how to clone or check out code from Git
repositories and how you can collaborate with
anyone on the same codebase without needing
to replicate their environment.

Encourage virtual pair programming
The one thing all these best practices for remote code reviews have in common
is they’re finding ways to replicate the efficiencies we find in a co-located
environment. In some cases—such as with innersourcing and widespread
asynchronous collaboration—the digital medium actually provides a benefit over
physical collaboration. There’s one area in particular where technology has given
developers a virtual leg up over the physical world, which may come as a surprise:
pair programming.

With today’s latest collaboration tools, such as Visual Studio Live Share,
it’s entirely possible for your distributed team to take advantage of pair
programming and real-time code reviews. Visual Studio Live Share enables
teams to share, edit, and debug projects together with chat and audio in real
time, regardless of the programming language, application being built, or even
software variations such as editor versions. Visual Studio Live Share also brings
unique benefits over co-located pair programming via features such as the ability
for each contributor to work within their own editor preferences, track each
other’s work from their own individual terminal, pull helpful context, and even
explore other files or ideas within the project independently while remaining
plugged into the session.

https://www.youtube.com/watch?v=dKLJsiK1QU8
https://www.youtube.com/watch?v=dKLJsiK1QU8
https://www.youtube.com/watch?v=dKLJsiK1QU8
https://www.youtube.com/watch?v=dKLJsiK1QU8

Tip 4: Enhance remote collaboration and reduce coding friction

28

“I don’t understand why it keeps failing! I’ve been working on this feature for
hours,” says Jay, shrugging.

Every developer knows Jay’s frustrations. When working alone, missing a small
detail can lead to a seemingly endless roadblock. You just can’t see it yourself!

Jay makes himself a cup of tea before returning to his desk. “Maybe I should ask
Zoe. She’s awesome at spotting code mistakes,” he thinks. “John would be great
too.” If their team was co-located, he could just turn around to see if either
were available, but they all live in different cities. Luckily, the team is used to
remote collaboration and has the right tools in place.

Jay opens the team’s virtual team room—a Microsoft Teams chat channel. He
can see that both Zoe and John are online and sends a quick message asking if
either can help. He sees Zoe typing... “Yes!” she replies. More typing... “Send me
a Live Share link and give me a call.”

Jay activates Live Share from his browser-based editor in Codespaces. He
messages the link to Zoe while he puts on his headset and starts an audio call.
He notices Zoe has joined the Live Share workspace when her colored cursor
shows up, indicating she’s in the session.

Jay and Zoe’s story:
Finding a remote team member to help,
on demand

To illustrate how your distributed team can work through
development roadblocks in real time with on-demand remote
code reviews, let’s look at the fictional story of Jay and Zoe.

Tip 4: Enhance remote collaboration and reduce coding friction

29

“What seems to be the problem?” Zoe asks as she inspects Jay’s code from her
favorite editor, Visual Studio Code. Jay responds, “I keep getting an ‘undefined’
error and can’t figure out what’s going on. It’s from this block of code.” He
selects a block of code in his browser-based editor, knowing Live Share will
show Zoe the highlighted code on her own machine.

Jay can see Zoe’s cursor moving around his screen as she talks through her
thoughts. “Ah, ha! I think I see the issue,” she says over the call. Jay watches
Zoe’s cursor as it highlights a specific block of code. She continues, “In your
loop here, it looks like you’re using the values of the object. But you’re using the
JavaScript ‘for/in’ loop, which iterates through the properties. I think you want
the ‘for/of’ loop instead.”

“Wow!” says Jay. He knew it was right there in front of his eyes. “You’re right.
Thanks so much. I’ll change it right away,” he says before thanking her again
and closing his Live Share session. “That was kind of like having Zoe coding over
my shoulder,” Jay thinks, as he gets back to work in his home office, complete
with a fresh cup of coffee from his new espresso maker.

Tip 3 briefly touched on the benefit of using a sandbox approach and giving
your team access to the GitHub Marketplace and community to explore
new tools and plugins. Who wouldn’t want to tap into a huge repository
of community tools and infrastructure to improve their application’s
capabilities and team’s development workflows? But you’ll want to
implement proper security safeguards along the way, ensuring your team
can access this goldmine of community tools while staying focused on
productivity instead of spending resources on managing security concerns
or hurdles.

As you’d expect with the GitHub community, there are already a number of
strong tools that can scan code for security vulnerabilities. One of the most
popular choices is the automated code-scanning tool Semmle. Semmle
has been used for years to automatically graph and scan code when a new
push request is made, checking it for common errors that can cause security
vulnerabilities. Along with checking code ahead of commits, Semmle’s
sematic code analysis engine can also verify existing or new components
across your codebase for known vulnerabilities.

What’s especially powerful about Semmle is how it incorporates
crowdsourced security vulnerability patterns from the entire GitHub
community, enabling your team to tap into an ever-evolving breadth of
security research. Semmle originally was only relied upon for open source
projects, but now many enterprises are running it at scale in the cloud,
enabling teams to ramp up hosted cloud environments much faster than
they previously could.

Tip 5 Strengthen and
automate app security

https://aka.ms/rdsemmle

Tip 5: Strengthen and automate app security

31

CodeQL: LGTM

 ● CodeQL is a code analysis engine
for product security teams to
quickly find zero-days and
variants of critical vulnerabilities.

 ● CodeQL helps you explore code
quickly to find and eradicate all
variants of vulnerabilities before
they become a problem.

 ● By automating variant analysis,
CodeQL enables product security
teams to find zero-days and
variants of critical vulnerabilities.

 ● LGTM is a code analysis platform
for developer teams to identify
vulnerabilities early and prevent
them from reaching production.

 ● LGTM automatically analyzes
every commit to identify
vulnerabilities early and enable
developers to prevent zero-days
from reaching production.

Regardless of the tool you use, automating app security will remove a
potential headache for your team and release the enormous potential
of the GitHub community, not least of which are all the ways you can
automate the development lifecycle.

Semmle’s Key Capabilities:

Automated variant analysis for
product security

Continuous security analysis
for developers

With a distributed team you’ll want to automate as
much of the development lifecycle as possible, both
to remove collaboration bottlenecks and accelerate
your team’s ability to distribute code.

As with any flexible ecosystem, there are many popular tools you can use
not only to enhance development, but also to create an end-to-end, highly
automated continuous integration/continuous deployment (CI/CD) pipeline.
It’s worth exploring the GitHub Marketplace to find what works for your
specific projects, programming languages, and workflows, but there are a
few popular choices worth mentioning.

First, while the specific code editor you choose will likely be based on how
it’s optimized for the particular programming language you’re using, there
are many powerful AI-assisted editors out there that apply machine learning
to writing code—making autocomplete suggestions for syntactically valid
options and even anticipating what a developer will write next.

Tip 6 Automate, automate,
automate

Tip 6: Automate, automate, automate

33

Learn how you can train a custom model
with Microsoft Visual Studio IntelliCode
to provide code suggestions based on
your actual codebase and how to share
your trained models, as well as how to
incorporate additional language support.

Some of these AI-assisted editors use open-source projects and popular
libraries and frameworks for training, which means they can even learn more
about your project over time and refine the training set.

As an example, Visual Studio Code has a capability, called IntelliCode,
that makes real-time recommendations for completing statements and
arguments, helps maintain coding styles and formatting conventions,
facilitates automated refactoring across your code base, and shares team
model recommendations by translating patterns from open-source GitHub
repos to your team’s code.

Another area to focus on are power tools, which can give developers more
time and increase productivity by automating the basics. Examples might
include picking the right data structure or algorithm or deciding on a more
readable name for a variable. One such power tool is Semmle, which was
highlighted in Tip 5 for its security enhancements, but is also a static code
analyzer. It will debug your code by examining it against a set of coding
rules, all while it’s flagging security vulnerabilities.

Check it out

https://www.youtube.com/watch?v=bC_IA_uOkrA
https://www.youtube.com/watch?v=bC_IA_uOkrA
https://www.youtube.com/watch?v=bC_IA_uOkrA
https://www.youtube.com/watch?v=bC_IA_uOkrA
https://aka.ms/rdsemmle

Tip 6: Automate, automate, automate

34

One of the most useful tools you can use, due to not only its power but its
flexibility, is GitHub Actions. It can be used to automate nearly any workflow
throughout the development lifecycle spanning build, test, package, release,
and deployment. There are thousands of plug-and-play automated actions
already built and maintained by the community, such as deploying a web
service, automating code reviews, automatically running static analysis,
or triggering events based on a pull request. There are also many existing
automations for building that CI/CD pipeline. Or your team can build
custom automations based on workflow templates matching any language
and tooling they want to use. GitHub Actions gives your team the ability to
customize and automate their workflows, from idea to production.

GitHub Actions makes it easy to automate all your software workflows,
now with world-class CI/CD.

 ● Simple: Build, test, and deploy your code right from GitHub.
Make code reviews, branch management, and issue triaging
work the way you want.

 ● Customizable: Run a workflow on any GitHub event. Build
automations around a push, issue creation, or a new release.

 ● Flexible: Combine and configure actions for the tools and
services you use, such as building a container, deploying a web
service, or automate welcoming new users to a project.

 ● Hosted your way: Run on Linux, macOS, Windows, or ARM, on
a VM or inside a container, and in the cloud or on-prem.

 ● Supporting any language: GitHub Actions supports Node.js,
Python, Java, Ruby, PHP, Go, Rust, .NET, and more.

Lastly, establishing a productive distributed team
means you’ll need to ensure they’re able to track
and respond to issues quickly throughout the
development, testing, and delivery pipeline, along
with properly monitoring and managing application
health and performance out in the wild.

Distributed teams can’t rely on a war room or physical signals to flag if an
application goes down in production or there’s a performance issue, so
you’ll need to accomplish this by building strong signals into your team’s
virtual workflows and environments.

Going back to the GitHub community, there are powerful tools for
embedding signals across the application lifecycle and production
environment. You can even look into using automation tools like GitHub
Actions to trigger alerts. But in the end, to ensure your team is highly
responsive, you’ll likely want to invest in a centralized solution, which will
populate not only key data for your dashboards, but also maintain full
observability into your applications, infrastructure, and network.

Tip 7 Embed signals to track app
health and performance

Tip 7: Embed signals to track app health and performance

36

Let’s take Azure Monitor as an example, which delivers a comprehensive
solution for collecting, analyzing, and acting on data across your
applications. This includes data on everything from the performance and
functionality of the application code to system and resource monitoring
data. It can be used to detect and diagnose application and dependency
issues, drill into monitoring data for performance troubleshooting and
deep diagnostics, support operations with alerts and automated actions,

and even create dashboards and other
visualizations for your team. Having
a comprehensive solution will enable
you to enhance the entire distributed
development lifecycle, and most
importantly, maximize the availability
and performance of your applications
and services.

One final point on maximizing availability, which can be an area of elevated
risk for a distributed team. You’ll likely have alerts set up to proactively
notify your team of critical situations, but it’s also important to ensure
your team is set up to triage the issue quickly and effectively. Does your
designated administrator or whoever is responsible for investigating an
issue have immediate access to the right subject matter expert (SME)?
Are there emergency protocols in place for reaching that person if they’re
unavailable? Are there stopgaps in place, such as standby SMEs who can
support? Is critical information locked up in a silo, or have you ensured
it’s documented and accessible to the broader team as part of your
contingency planning?

Pausing on the importance of documentation: you’ll find numerous
playbooks with best practices for documentation, so we won’t go in-depth
here, but keep in mind it’s a fundamentally important concern. Like many
of these tips and best practices, what might be a minor issue among a
co-located team can have a disproportionate impact on a distributed
team when weak points are pressure tested and the team doesn’t have the
necessary speed and agility to respond.

Having a comprehensive
solution will enable you to
enhance the entire distributed
development lifecycles.

https://azure.microsoft.com/services/monitor/

37

Closing thoughts
Leading a developer team is not easy. Beyond managing a set of unique
individuals, each with their own talents and aspirations, you’re likely working
across the business to meet outcomes with good technical solutions and
working hard with peers to ensure those technical solutions work well with each
other. You’re also likely trying to keep on top of a changing environment. Most
of all, you’re likely acutely aware that time is always hard to find.

It can be tempting to think you can save time by running distributed developer
teams just like co-located ones. You may assume the initial challenges that
naturally arise will work themselves out or can be solved later. You may see
the effort required to change tools and processes as not being worth the
investment of time and resources—especially if you’ll need to build the case
internally. But keep in mind that the earlier you start, the easier it will be to
implement effective change, and the greater your return on investment will be
in the end.

Many of the steps you can take to optimize the productivity of your remote
developer team are simply process changes or can be implemented with the
tools you already have. Where new tools or methodology shifts are required,
you can pilot those changes with your team and continue in an incremental,
organic way that’s matched to your resources. As you and your team realize
the benefits that come from improving individual and team workflows, you’ll
naturally secure more buy-in, and momentum will build both within your team
and across the organization.

Optimizing the productivity of your remote developer team will be a unique
journey. Not every recommended approach will be a direct fit, and there are
no universal tools. But these tips will point you in the right direction while
equipping you with the information and resources you’ll need to navigate
change, working through all the roadblocks and bottlenecks along the way.

Turn distributed development into an advantage. Tap into the full potential
of your development talent. Get back to focusing on what matters: driving
innovation and business performance with the power of code.

How Microsoft can help
Cutting-edge development is about building and
running applications differently. To help, Microsoft
offers a selection of learning resources, products, and
services to help all developer teams be more productive,
independent of language, framework, or cloud.

Check out the resources on the
following page to get started.

Share this

Resources

© 2020 Microsoft Corporation. All rights reserved. This document is provided “as is.” Information
and views expressed in this document, including URL and other internet website references, may
change without notice. You bear the risk of using it. This document does not provide you with
any legal rights to any intellectual property in any Microsoft product. You may copy and use this
document for your internal, reference purposes.

Visual Studio: Try Visual Studio Codespaces, Live Share, IntelliCode, and the other
tools that help your team build and collaborate more productively. Learn more.

Microsoft Azure: Turn ideas into solutions with more than 100 services to build,
deploy, and manage applications—in the cloud, on-premises, and at the edge—
using the tools and frameworks of your choice. Try Azure free.

Free training with Microsoft Learn: Help your developer teams gain new skills
and certifications with interactive online learning to ensure developer teams
become and stay proficient in their domain. Find training.

Talk to our sales team: Talk to our team of specialists to see how Microsoft can
help you optimize your developer team productivity. Contact sales.

The Developer Velocity Self-Assessment Tool: Identify opportunities for
your team to accelerate velocity based on a customized analysis of your current
situation. Take the assessment.

Share with a friend

Help other leaders improve their developer team productivity
by sharing this series on Twitter and LinkedIn.

https://aka.ms/AA7rs6v
https://aka.ms/AA7rzrb
https://aka.ms/AA7rs80
https://aka.ms/AA7rs7o
https://aka.ms/AA7se7k
https://twitter.com/intent/tweet?text=I%20just%20learned%207%20tips%20to%20optimize%20my%20remote%20developer%20team%E2%80%99s%20productivity.%20You%20should%20too%20by%20reading%20this%20book.%207%20Tips%20to%20Optimize%20Remote%20Developer%20Team%20Productivity:%20&url=https://aka.ms/7tipsteamproductivity
https://www.linkedin.com/sharing/share-offsite/?url=https://aka.ms/7tipsteamproductivity
mailto:?subject=7%20Tips%20to%20Optimize%20Remote%20Developer%20Team%20Productivity&body=I%20just%20learned%207%20tips%20to%20optimize%20my%20remote%20developer%20team%E2%80%99s%20productivity.%20You%20should%20too%20by%20reading%20this%20book.%20#Microsoft%20#Remote%20#DeveloperVelocity.%207%20Tips%20to%20Optimize%20Remote%20Developer%20Team%20Productivity:%20https://aka.ms/7tipsteamproductivity
mailto:?subject=7%20Tips%20to%20Optimize%20Remote%20Developer%20Team%20Productivity&body=I%20just%20learned%207%20tips%20to%20optimize%20my%20remote%20developer%20team%E2%80%99s%20productivity.%20You%20should%20too%20by%20reading%20this%20book.%20#Microsoft%20#Remote%20#DeveloperVelocity.%207%20Tips%20to%20Optimize%20Remote%20Developer%20Team%20Productivity:%20https://aka.ms/7tipsteamproductivity

	The top 7 to optimize developer team producitivity
	Tip 1
	Tip 2
	Tip 3
	Tip 4
	Tip 5
	Tip 6
	Tip 7
	Closing thoughts
	How Microsoft can help

